
Learning to Code in Localized Programming Languages
Sayamindu Dasgupta∗†

∗MIT Media Lab
Cambridge, MA 02142

sayamindu@media.mit.edu

Benjamin Mako Hill†

†University of Washington
Seattle, WA, 98195

{sdg1, makohill}@uw.edu

ABSTRACT
Education research suggests that learning in one’s local lan-
guage can have a positive impact on learning outcomes. We
offer a quantitative test of the association between local lan-
guage use and the rate at which youth learn to program. Using
longitudinal data drawn from five countries and over 15,000
users of Scratch, a large informal learning community, we find
that novice users who code with their programming language
keywords and environment localized into their home countries’
primary language demonstrate new programming concepts at
a faster rate than users from the same countries whose in-
terface is in English. We conclude with a discussion of the
implications of our findings for designers of online learning
systems.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces; K.3.2 Computer and Information Science
Education: Computer Science Education

Author Keywords
learning; programming language education; localization;
learning in local languages; linguistic accessibility; Scratch

INTRODUCTION
A large body of education research and theory suggests that
learning in one’s local language at the primary and secondary
levels supports positive learning outcomes [20, 4, 13]. As early
as 1953, UNESCO’s publication on “the use of vernacular
languages in education” [20] argued for instruction in students’
mother tongues both as early, and as late, as possible:

On educational grounds, we recommend that the use
of the mother tongue be extended to as late a stage in
education as possible. In particular, pupils should begin
their schooling through the medium of the mother tongue
because they understand it best [. . . ]

A 2008 study that covered 26 countries and 153 linguistic
groups found that attendance in educational institutions was
positively related with the availability of mother-tongue in-
struction [18]. Another study in Guatemala showed that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
L@S 2017, April 20-21, 2017, Cambridge, MA, USA
ACM 978-1-4503-4450-0/17/04.
http://dx.doi.org/10.1145/3051457.3051464

Figure 1: Choropleth map showing the distribution of Scratch
users worldwide as indicated by self-reported country informa-
tion. Countries are shaded from lightest to darkest in terms of
the number of Scratch users in the country along a log-linear
scale [10].

schools that offered bilingual education in students’ mother
tongues have higher attendance and promotion rates and lower
repetition and dropout rates [12].

As the audiences for large-scale digital learning tools and
environments become more global, the potential benefit of
supporting local languages in these systems has grown. De-
spite prior work in HCI highlighting the need for localized1

user interfaces [15, 9], localization can be complex and ex-
pensive [7]. As a result, many online learning systems are
offered only in English. When interfaces are localized, it is
often only into a small number of languages spoken by large
populations. For speakers of other languages, especially for
those belonging to small or marginalized linguistic groups, the
only option is to use English.

The use of English is particularly pronounced in programming
education. In nearly every widely used programming language,
the names of symbols and keywords (e.g., for, while, if, else)
are borrowed from English. In this paper, we examine the
relationship between the rate at which young people learn
to code and their use of localized programming languages
and user interfaces. Using longitudinal data on the learning
trajectories of 15,015 users of the Scratch online community
from five countries, we find that, controlling for differing

1In this paper we use the term “localization” to mean translated
user interfaces. However, localization often consists of more than
translation—for example, customized UI icons, customized repre-
sentations of numbers, locale appropriate units, support for local
calendars, and so on.

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

33

http://dx.doi.org/10.1145/3051457.3051464


(a) English (b) Italian (c) Norwegian Bokmål (d) German

Figure 2: Functionally identical Scratch code represented in four different languages.

levels of activity and socialization, learners who code with
localized programming language keywords and environments
demonstrate new programming concepts at a faster rate relative
to users from the same countries who use otherwise identical
interfaces in English. We conclude with a discussion of our
findings, the relatively small size of our estimated effect, and
implications of our study for designers of online learning
systems.

Our empirical setting is Scratch [14], a programming language
and online community designed for children aged 8-16. In
Scratch, programs are constructed by dragging and dropping
visual blocks to define the behavior of on-screen graphical
objects called sprites (Figure 2). The Scratch language is sup-
ported by a large online community launched in 2007 [11],
where creators can share their projects, comment on each
others’ work, and remix projects created by their peers. Al-
though participation in Scratch is generally open-ended and
self-directed, Scratch is used in formal educational settings as
well [2].

When Scratch users register they are asked to list their home
country. Scratch’s 16 million users come from all over the
world (Figure 1). The Scratch programming editor, website,
and programming blocks are translated into a number of lan-
guages by volunteer translators through a web-based transla-
tion portal. When a user visits the Scratch website, the inter-
face language is automatically selected based on the user’s
browser configuration. In previous studies, this mechanism
has been used to identify English as a Second Language (ESL)
users in MOOCS [19]. Scratch users can also select their lan-
guage manually from a menu in the website or code-editor in-
terface. The language choice persists across browser sessions
through a HTTP cookie-based mechanism. In exploratory
analysis, we found that a majority of the users (approx. 88%)
use a single language throughout their interactions with the
site.

In Scratch, a single piece of code can be represented in differ-
ent languages depending on the language selected by the user.
Figure 2 shows the same Scratch code, from the same project,
represented in four different languages. For example, when a
user of the localized Japanese interface creates a project and
shares it, they do so entirely in Japanese. If a user of the Italian

localized interface were to view or edit the Japanese user’s
project, the code would appear in Italian.

Scratch reflects a unique source of observational data to an-
swer questions about the effect of localization on learning for
several reasons: it is among the largest websites where young
people learn to program, it is used by large numbers of users
around the world, and it has been localized into dozens of
languages by a large team of volunteer translators. Given edu-
cation research that suggests that local language use will lead
to better learning outcomes, our hypothesis is that Scratch
users will learn programming concepts more rapidly when
their programming language keywords and environments are
localized into their own languages.

DATA AND MEASURES
Blocks in Scratch are the equivalent of tokens in text-based
programming languages and can be used to make a character
on the screen (sprite) move, to change a variable, to repeat a set
of instructions, and so on. For example, in Figure 2, blocks for
making a sprite move back and forth are enclosed in an outer
“forever” loop block that is connected to an event-handler block
(“when green flag clicked”). In previous research on Scratch
and other block-based programming languages such as App
Inventor, learning has been modeled as growth in the cumula-
tive repertoire of blocks, similar to a measure of demonstrated
vocabulary, which may grow more or less quickly over time
[22, 5, 21]. We follow a similar approach and construct a
longitudinal measure that represents a cumulative block reper-
toire over time for each user in our dataset. The cumulative
block repertoire is updated for every de novo (i.e., non-remix)
project shared and incremented by the number of types of
blocks in each project that the user had never used previously.
For example, if a given project uses two instances of the if
block, and if the user has not used the if block before in pre-
vious projects, we increase the cumulative block repertoire by
one. We use this measure (Cumulative Block Repertoireup) as
our measure of learning and as the dependent variable in our
analysis. The subscript “up” reflects the fact that the variable
is at the level of the project, clustered within user.

A central independent variable in our analysis is a measure of
whether users are interacting with Scratch using a localized
interface. To construct this variable, we seek to exploit varia-

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

34



Country Language % average translation # users % users w/ local language # projects
Portugal Portuguese 98.9 2,630 90.2 13,178
Italy Italian 98.5 3,820 87.3 19,875
Brazil Brazilian Portuguese 96.5 4,353 88.0 26,170
Germany German 95.8 2,666 75.2 14,339
Norway Norwegian Bokmål 95.5 1,546 84.6 6,372

Table 1: Countries included in the dataset used in this paper, along with the corresponding primary language, average translation
level, number of users, proportion of users who use Scratch in the local language, and total number of projects (with usable
language data) per country.

tion in the agreement between users’ local language and their
interface language. For example, we seek to compare Italian-
speaking youths using Italian interfaces to Italian-speaking
youths using non-localized English interfaces. Constructing
this variable using observation data means we must separately
infer each user’s primary language and interface language.

There are several reasons why a user might use an interface
in a language other than their primary language. One set of
reasons is related to the fact that the Scratch website attempts
to infer users’ language preference on their first visit using
metadata sent by the users’ web browser. If a user’s computer
is not configured to send language preference data when a
user first visits Scratch, or if any number of technical issues
prevent this from happening correctly, users will end up using
Scratch in English. When this happens, users may not change
the language because they are not aware of the existence of
the menu for switching their interface language manually. In
another scenario, a learner who has a working knowledge of
English may choose to use the system in English because of
external factors (e.g., the instructional material being followed
may be in English).

Identifying a users’ interface language in Scratch is relatively
straightforward. When a Scratch user creates a project, the
language choice of the user at that moment is recorded. We use
this information to determine each user’s interface language.
Because a large majority of users (88%) never change their
language, we set each user’s language to what they have used
for more than 50% of their published de novo projects.

A Scratch user’s primary language, independent of their in-
terface, is not possible to observe directly. As a proxy, we
first identify the countries that users’ self-report as their home
at the time that they create their accounts. We then associate
languages with countries using Ethnologue: Languages of the
World [8] to identify the most widely-spoken languages in each
country. We treat these national languages as users’ primary
language. At this point, we excluded all users from countries
where English is the mostly widely spoken language as well
as users from countries without a single language spoken by a
majority of the population.

Since translation in Scratch is volunteer driven, there are only
a few languages into which the Scratch website, the Scratch
code editor, and the Scratch programming blocks are fully
translated. Additionally, the Scratch website and the editor
are being continuously developed and updated with bug fixes

and new features. Frequently, these updates cause translations
to become out of date, which causes coverage to vary over
time. Because we are interested in the effect of translated
interfaces, we attempt to identify a set of languages into which
the Scratch interface (website, code-editor, and programming
blocks) was fully translated. Toward this end, we calculate the
translation coverage in all languages twice, at the beginning
of our data-collection period and at the end. Although no
languages were 100% translated at both points, five languages
had at least 95% average translation coverage: Portuguese,
Italian, Brazilian Portuguese, German and Norwegian Bokmål.
As a result, we restrict our analysis to users who reported
their home countries as Portugal, Italy, Brazil, Germany, and
Norway, respectively.

Using these measures of users’ inferred interface and primary
language, we construct a dummy variable (Localized?u with
a subscript u because it does not vary across users) set to
1 if a user’s inferred interface language matches their home
country’s most widely used language (i.e., Portuguese, Ital-
ian, Brazilian Portuguese, German, and Norwegian Bokmål,
respectively). Table 1 shows the number of users from each
country in the resulting dataset who use Scratch in their local
language. As an additional robustness check of our study, we
did a similar analysis with languages above the 90% transla-
tion level threshold with two additional countries (France and
Slovenia). The overall results remained similar in magnitude
and sign. Next, we construct a continuous variable that rep-
resents the cumulative number of de novo projects shared by
the user prior to the observation (De Novo Projectsup). The
interaction between these two variables constitutes our key
question predictor.

We also construct a series of controls used by Dasgupta
et al. [5]. We construct a control for the cumulative number
of blocks used in users’ de novo projects (Total Blocksup). To
control for social activity, we construct a control for the num-
ber of comments that projects’ creators have left on Scratch at
the time that they shared the project (Commentsup). To capture
the effect of remixing, we construct a control for users’ num-
bers of remixes (Remixed Projectsup). Dasgupta et al., whose
dataset was drawn from an earlier version of Scratch, used a
count of downloads as a measure of users’ exposure to other
users’ source code. In the newer version of Scratch used in
our analysis, downloading has been replaced with ‘See Inside”
functionality that allows users to view source code directly on
the website. Hence, we add a control for the number of times

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

35



users have seen inside another user’s projects (See Insidesup).
Finally, we construct controls for users’ tenures on the site in
days (Experienceup) and self-reported age measured in years
(User Ageup).

For our analysis, we constructed a dataset that contains all
projects shared by users from the five focal countries who
signed up between May 15, 2015 and May 15, 2016. We
chose May 15, 2015 as the data collection start date as the
Scratch software started to log language information just prior
to that date. As we rely on longitudinal measures for our study,
we consider only those users who have shared more than one
de novo project during our period of analysis. Out of a total
of 15,339 users from this period who shared more than one
de novo project, we discard 324 who were found to have used
Scratch in a language that is neither the local language of
that country nor English. Our final dataset includes a total of
90,859 projects shared between May 15, 2015 to July 8, 2016
by the remaining 15,015 users.

Variable Range µ M σ

Cumulative Block [0, 139] 27 25 18
Repertoire
De Novo Projects [1, 744] 6 3 12
Remixed Projects [0, 570] 1 0 7
Comments [0, 2771] 4 0 41
Total Blocks [0, 72461] 487 138 1909
Experience [0, 415] 62 39 71
User Age [4, 89] 19 15 12

Table 2: Summary statistics for users in our dataset at the
point of the final project included in the dataset. Columns
report variables’ range, mean (µ), median (M), and standard
deviation (σ ).

Among these projects, 10,768 are missing language informa-
tion. Another 157 projects are missing all data in the Scratch
database. Examination of randomly chosen projects where lan-
guage information is missing suggests that these were projects
uploaded from the standalone Scratch offline client, which
though localized, does not include language information with
project uploads. For the 157 projects without any data at all,
it is hard to pinpoint a reason that data is missing. One possi-
bility is that the Scratch website’s project upload or auto-save
mechanism failed for these projects. As an additional data
cleanup measure, we mark 2,389 projects as having missing
age information, where the user age was found to be self-
reported as less than 4 years, or more than 90 years of age. As
with any online-activity dataset all our variables of interest are
highly skewed, and we provide summary statistics for each
user in our dataset (post cleanup) in Table 2 at the point when
users shared their final projects.

ANALYTIC PLAN
Our analytic plan closely follows the approach used by Das-
gupta et al. Our dataset is structured so that our unit of analysis
is the de novo Scratch project. Of course, measures of cumu-
lative block repertoire within a particular user are not inde-
pendent of each other, and this introduces an important threat

of serial correlation of standard errors. The most common
technique for addressing this threat is the use of multi-level
models [17]. Dasgupta et al. [5] addressed this with user-level
fixed effects, which control for all observed and unobserved
qualities that have a consistent effect across projects shared
by a user. This strategy is not possible in this study because
a key question predictor (Localized?u) does not vary across
users’ projects. Instead, we include a random intercept term.
Since our dependent variable is a count, we model growth in
block repertoire using mixed-effects Poisson regression mod-
els using the lme4 package in R [1]. As we are concerned
about over-dispersion in the dependent variable, we fit a neg-
ative binomial regression model as well, and the results are
similar. Since the distributions of the continuous independent
variables are skewed, we log-transform all of them except for
User Ageup.

In our first model (M1), we consider only three variables. First,
we include our dummy variable, which indicates whether the
user in question is creating projects with a localized inter-
face (Localized?u). Second, we include our continuous vari-
able that represents the cumulative number of shared de novo
projects (De Novo Projectsup). Finally, because our hypothe-
sis is that the growth of repertoires for users using localized
interfaces will be faster, we include an interaction term be-
tween Localized?u and De Novo Projectsup, which allows us
to estimate the difference in slope associated with a localized
interface. The formal version of M1 is presented below:

Cumulative Block Repertoireup = β0+

β1 lnLocalized?u +β2 lnDe Novo Projectsup+

β3Localized?u× lnDe Novo Projectsup +[u0i + εup]

In our second model (M2), we add the series of controls de-
scribed above. Formally, M2 can be represented as:

Cumulative Block Repertoireup = β0+

β1Localized?u +β2 lnDe Novo Projectsup+

β3Localized?u× lnDe Novo Projectsup

+β4 lnRemixed Projectsup +β5 lnSee Insidesup+

β6 lnCommentsup +β7 lnTotal Blocksup+

β8 lnExperienceup +β9User Ageup +[u0i + εup]

RESULTS
Shown in Table 3, the results of parameter estimates for both
models suggest a positive effect of localization on the rate
at which block repertoire increases. Because the addition of
controls in M2 does not alter our results substantively, we
discuss only the results from M2 below. The main effect of
Localized? is negative (β =−0.056, SE = 0.015, p < 0.01).
This suggests that, everything else equal, the first projects by
users of the localized interface have a lower diversity of blocks.
Given that a user’s cumulative repertoire cannot decrease, it
is unsurprising that we estimate that the main effect of De
Novo Projects is positive (β = 0.012, SE = 0.005, p < 0.001).

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

36



Cumulative Block Repertoire
M1 M2

Localized?u −0.109∗ −0.056∗
(0.020) (0.015)

lnDe Novo Projectsup 0.517∗ 0.012∗

(0.003) (0.005)

Localized?u× lnDe Novo Projectsup 0.091∗ 0.027∗

(0.004) (0.004)

lnRemixed Projectsup −0.033∗

(0.002)

lnSee Insidesup 0.020∗
(0.002)

lnCommentsup −0.048∗
(0.002)

lnTotal Blocksup 0.371∗
(0.002)

lnExperienceup 0.052∗

(0.001)

User Ageup −0.001∗

(0.0004)

Constant 2.119∗ 1.045∗
(0.019) (0.016)

Observations 79,934 77,545
Log Likelihood -284,220.000 -246,430.700

Note: ∗p<0.01

Table 3: Results of fitting mixed-effects Poisson regression
models M1 and M2.

Our key question predictor is the interaction term between De
Novo Projects and Localized?, which captures the difference
in the rate of repertoire growth between users of localized and
English interfaces. Our estimates are small but positive (β =
0.027, SE = 0.004, p < 0.001). Although we estimate that
users of non-localized interfaces begin with higher repertoires,
our model predicts that users who have shared 2 log units more
projects will have the same repertoire as otherwise identical
users of non-localized interfaces and that this gap will widen
as users share more.

Because our model is a non-linear model, because most of our
our independent variables are log-transformed, and because
our key predictor is an interaction, interpreting the coefficients
in our model directly can be challenging. We find it useful
to interpret the results by describing model-predicted values
for “prototypical” users. For example, M2 predicts that a user
who has shared 16 projects (95th percentile in our dataset)
with median values for all of our control variables would have
a repertoire that would be 37.1 if they had used English but
37.9 if they had used a localized interface instead. Though
the difference of less than 1 block is small, the negative main
effect of Localized?u masks some of the differences in the rate
of change.

0

10

20

30

40

50

0 10 20
Number of shared de novo projects

M
od

el
 p

re
di

ct
ed

 c
um

ul
at

iv
e 

bl
oc

k 
re

pe
rto

ire

Localized?
FALSE
TRUE

Figure 3: Model-derived predicted values (from model M2)
for Cumulative Block Repertoire for two prototypical users
across a range of values of de novo projects. The main effect
of localized language use is set to zero. All other predictor
variables are set to median values for the corresponding value
of de novo project share count.

To further aid in interpretation, we visualize a range of these
model-predicted values drawn from M2 in Figure 3 for two
such prototypical users: one who uses a localized interface
and the other who does not. The x-axis represents the number
of de novo projects shared (up to the 98th percentile in our
dataset), and the y-axis represents the users’ model-predicted
cumulative block repertoire. Since all other predictor variables
tend to increase over time, we set each of of our controls
to the median value across all projects with the same value
of De Novo Projects (e.g., the median for users’ 1st, 2nd, 3rd,
. . . etc. projects). To make it easier to interpret the effect of the
interaction, we also set the main effect of Localized? to 0 so
that both prototypical users start with identical repertoires. A
user who has shared 16 projects (95th percentile in our dataset)
with median values for all of our control variables would have
a repertoire that would be 37.1 if they had used English but
40.1 if they had used a localized interface instead.

All of the parameter estimates for our controls are well esti-
mated. Drawn from a very different version of Scratch and
from a non-US sample, several of our estimates for our con-
trols are different in sign from those found in the earlier study
by Dasgupta et al. [5]. Most important for the previous work,
Dasgupta et al. found a positive relationship between remixing
activity and learning, and we estimate a negative association.
Although this might be explained by revisions to Scratch that
changed the way that code is shared and reused, our model
points to an important area for further study. In terms of our
papers’ findings, the addition of the controls in M2 attenuate
the size of our effect but does not alter the sign or substantive
takeaway.

LIMITATIONS
Of course, the validity of our findings and results could be
affected by a number of potential threats to validity. First,

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

37



cumulative block repertoire can increase at a faster rate for
reasons unrelated to, but correlated with, users’ use of a lo-
calized interface. In other words, although our results can be
understood as evidence in support of the hypothesis that local
language use can cause users to learn about new programming
blocks more quickly, our results describe correlation, not cau-
sation. We have attempted to address this threat by including a
number of variables in our model as controls for productivity,
social activity, and age, but there may be other important vari-
ables that we have omitted. For example, wealthier individuals
are often more likely to be more fluent with English [6]. If
relatively wealthier users within a country are more likely to
use a non-localized interface, they might also learn faster or
slower than their less wealthy peers for reasons other than the
language of the Scratch interface.

Second, it is unclear what effect the English-dominated nature
of the Scratch online community has on learning. In our anal-
ysis, we choose languages where translation coverage is very
high, meaning that the website is localized almost completely.
However, the content on the Scratch website includes prompts
within projects, comments, and project descriptions. Based on
our unscientific observations, most of this material—with the
exception of language specific forums—is in English. If social
learning within Scratch is supported by English fluency, we
might expect English users to be at a relative advantage com-
pared to users relying on localization. Ultimately, however,
the implication of this is unknown.

Third, our analysis relies on a series of assumptions that we
know are not always true. Central to our construction of our
variable Localized? is the assumption that everyone in each
country in our dataset speaks the same language (e.g., that
in Germany, everyone speaks German). This is clearly not
always true. In future work, it may be possible to use language-
detection algorithms [16] to infer users’ primary languages
from their submitted content (e.g., project titles, comments,
variable names in projects). However, the presence of English-
speaking users in our dataset using the non-localized interfaces
seems most likely to lead to under-estimates of the effect
of localization on learning because these English-speaking
users in non-English-speaking countries would be using their
preferred language and would not be at a relative disadvantage.

Finally, our measure of block repertoire cannot detect whether
a block is used correctly or if a user actually understands the
function of the block. This is a challenge with quantitative
measures of learning in general, and it has been shown through
qualitative work [3] that there are scenarios where a learner
uses a given Scratch block by trial and error without neces-
sarily understanding how it works. We present our work in
the hope that future research will critique and build upon our
approach and measures.

DISCUSSION
This paper’s contribution is support for the theory that novice
learners have better learning outcomes when learning in their
own language. We present models that estimate a positive
association between the growth rate of users’ repertoires of
programming blocks and the translation of their programming
language and interface into their local languages. We do not

know if these results are generalizable beyond the users and
countries in our dataset. We believe that our work points to
the possible benefits of supporting localization for designers
of educational programming languages and environments.

Our estimated effect size is small and reflects a difference of
only several blocks over the full trajectory of some of Scratch’s
most active users. However, we remain optimistic about these
results for two reasons. First, a single block reflects a very
large proportion of most users’ repertoires. Second, there are
several plausible scenarios, discussed above, that might lead
to an underestimation of our effect. Of course, as we explain
in our limitations, establishing a causal effect remains a goal
for future work.

Perhaps more important is the effect that localization has on
the degree to which engagement and learning is possible in
the first place. After all, Scratch is almost unique among pro-
gramming languages in that it provides a completely localized
interface, including a translated version of the programming
language itself. Although we have presented evidence in sup-
port of the claim that young programmers learn more quickly
using localized interfaces, the most important effect of local-
ization, not captured by our analysis, may be that being able to
engage in ones’ primary language supports users who would
otherwise not learn to code at all.

ACKNOWLEDGMENTS
We are grateful to the Lifelong Kindergarten group at the MIT
Media Lab for creating Scratch and for continuing to support
the growth of the community and the technical platform. We
would also like to acknowledge Mitchel Resnick, Natalie Rusk,
Nathan TeBlunthuis, and our anonymous reviewers for their
support and thoughtful feedback on this paper. Financial sup-
port for this work came from the National Science Foundation
(grants DRL-1417663 and DRL-1417952).

REFERENCES
1. Douglas Bates, Martin Mächler, Ben Bolker, and Steve

Walker. 2015. Fitting Linear Mixed-Effects Models
Using lme4. Journal of Statistical Software 67, 1 (2015),
1–48. DOI:http://dx.doi.org/10.18637/jss.v067.i01

2. Karen Brennan. 2012. ScratchEd: Developing support for
educators as designers. Designing with teachers:
Participatory approaches to professional development in
education (2012), 67–77.

3. Karen Brennan and Mitchel Resnick. 2012. New
frameworks for studying and assessing the development
of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association. AERA, Vancouver, Canada. http:
//scratched.gse.harvard.edu/ct/files/AERA2012.pdf

4. Dörthe Bühmann and Barbara Trudell. 2008. Mother
tongue matters: Local language as a key to effective
learning. Technical Report. United Nations Educational,
Scientific and Cultural Organization (UNESCO), Paris,
France. http:
//unesdoc.unesco.org/images/0016/001611/161121e.pdf

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

38

http://dx.doi.org/10.18637/jss.v067.i01
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
http://unesdoc.unesco.org/images/0016/001611/161121e.pdf
http://unesdoc.unesco.org/images/0016/001611/161121e.pdf


5. Sayamindu Dasgupta, William Hale, Andrés
Monroy-Hernández, and Benjamin Mako Hill. 2016.
Remixing As a Pathway to Computational Thinking. In
Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
1438–1449. DOI:
http://dx.doi.org/10.1145/2818048.2819984

6. Janina Kahn-Horwitz, Joseph Shimron, and Richard L.
Sparks. 2006. Weak and strong novice readers of english
as a foreign language: Effects of first language and
socioeconomic status. Annals of Dyslexia 56, 1 (2006),
161–185. DOI:
http://dx.doi.org/10.1007/s11881-006-0007-1

7. Luis A. Leiva and Vicent Alabau. 2015. Automatic
Internationalization for Just In Time Localization of
Web-Based User Interfaces. ACM Trans. Comput.-Hum.
Interact. 22, 3 (May 2015), 13:1–13:32. DOI:
http://dx.doi.org/10.1145/2701422

8. M Paul Lewis, Gary F Simons, and Charles D Fennig
(Eds.). 2016. Ethnologue: Languages of the world (online
edition). Vol. 19. SIL International, Dallas, TX.
http://www.ethnologue.com/

9. Aaron Marcus, Nuray Aykin, Apala Lahiri Chavan,
Donald L. Day, Emilie West Gould, Pia Honold, and
Masaaki Kurosu. 2000. Cross-cultural User-interface
Design: What? So What? Now What?. In CHI ’00
Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’00). ACM, New York, NY, USA,
299–299. DOI:http://dx.doi.org/10.1145/633292.633468

10. MIT Scratch Team. 2013. Scratch Statistics. (2013).
https://scratch.mit.edu/statistics/ Accessed:
2016-10-03.

11. Andrés Monroy Hernández. 2007. ScratchR: sharing
user-generated programmable media. In Proceedings of
the 6th international conference on Interaction design
and children (IDC ’07). ACM, New York, NY, USA,
167–168. DOI:
http://dx.doi.org/10.1145/1297277.1297315

12. Harry Anthony Patrinos and Eduardo Velez. 2009. Costs
and benefits of bilingual education in Guatemala: A
partial analysis. International Journal of Educational
Development 29, 6 (2009), 594 – 598. DOI:
http://dx.doi.org/10.1016/j.ijedudev.2009.02.001

13. Helen Pinnock and Gowri Vijayakumar. 2009. Language
and Education: The Missing Link: How the Language
Used in Schools Threatens the Achievement of Education
for All. CfBT Education Trust, Reading; London.
http://www.unesco.org/education/EFAWG2009/

LanguageEducation.pdf

14. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009),
60–67. DOI:http://dx.doi.org/10.1145/1592761.1592779

15. Patricia Russo and Stephen Boor. 1993. How Fluent is
Your Interface?: Designing for International Users. In
Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems
(CHI ’93). ACM, New York, NY, USA, 342–347. DOI:
http://dx.doi.org/10.1145/169059.169274

16. Nakatani Shuyo. 2010. Language detection library for
Java. (2010).
http://code.google.com/p/language-detection

17. Judith D. Singer and John B. Willett. 2003. Applied
Longitudinal Data Analysis: Modeling Change and Event
Occurrence. Oxford University Press, USA.

18. Jeroen Smits, Janine Huisman, and Karine Kruijff. 2008.
Home language and education in the developing world.
Paper commissioned for the EFA Global Monitoring
Report 2009, Overcoming Inequality: why governance
matters (2008). http:
//unesdoc.unesco.org/images/0017/001787/178702e.pdf

19. Judith Uchidiuno, Amy Ogan, Kenneth R. Koedinger,
Evelyn Yarzebinski, and Jessica Hammer. 2016. Browser
Language Preferences As a Metric for Identifying ESL
Speakers in MOOCs. In Proceedings of the Third (2016)
ACM Conference on Learning @ Scale (L@S ’16). ACM,
New York, NY, USA, 277–280. DOI:
http://dx.doi.org/10.1145/2876034.2893433

20. UNESCO. 1953. The Use of Vernacular Languages in
Education. Technical Report 8. United Nations
Educational, Scientific and Cultural Organization
(UNESCO), Paris, France. http:
//unesdoc.unesco.org/images/0000/000028/002897eb.pdf

21. Benjamin Xie and Hal Abelson. 2016. Skill Progression
in MIT App Inventor. In 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
IEEE, Cambridge, UK. DOI:
http://dx.doi.org/10.1109/VLHCC.2016.7739687

22. Seungwon Yang, Carlotta Domeniconi, Matt Revelle,
Mack Sweeney, Ben U. Gelman, Chris Beckley, and
Aditya Johri. 2015. Uncovering Trajectories of Informal
Learning in Large Online Communities of Creators. In
Proceedings of the Second (2015) ACM Conference on
Learning @ Scale (L@S ’15). ACM, New York, NY,
USA, 131–140. DOI:
http://dx.doi.org/10.1145/2724660.2724674

L@S 2017· Learn to Code April 20–21, 2017, Cambridge, MA, USA

39

http://dx.doi.org/10.1145/2818048.2819984
http://dx.doi.org/10.1007/s11881-006-0007-1
http://dx.doi.org/10.1145/2701422
http://www.ethnologue.com/
http://dx.doi.org/10.1145/633292.633468
https://scratch.mit.edu/statistics/
http://dx.doi.org/10.1145/1297277.1297315
http://dx.doi.org/10.1016/j.ijedudev.2009.02.001
http://www.unesco.org/education/EFAWG2009/LanguageEducation.pdf
http://www.unesco.org/education/EFAWG2009/LanguageEducation.pdf
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/169059.169274
http://code.google.com/p/language-detection
http://unesdoc.unesco.org/images/0017/001787/178702e.pdf
http://unesdoc.unesco.org/images/0017/001787/178702e.pdf
http://dx.doi.org/10.1145/2876034.2893433
http://unesdoc.unesco.org/images/0000/000028/002897eb.pdf
http://unesdoc.unesco.org/images/0000/000028/002897eb.pdf
http://dx.doi.org/10.1109/VLHCC.2016.7739687
http://dx.doi.org/10.1145/2724660.2724674

	Introduction
	Data and Measures
	Analytic Plan
	Results
	Limitations
	Discussion
	Acknowledgments
	REFERENCES 



