Quality and the Reliance on Individualsin Free Software Proj ects

Martin Michlmayr
Departmenbf ComputerScience
andSoftwareEngineering
University of Melbourne
Victoria, 3010,Australia
martin@michlmayiorg

Abstract

It hasbeensugyestedthat the superiorquality of many
Free Softwae projectsin comparisonto their proprietary
counterpartsis in part dueto the Free Softwae commu-
nity’s extensivesource code peerreview process. While
manyarguethat softwae is bestdevelopedby individuals
or small teams,the processof detugging is highly paral-
lizable This“one and many” modeldescribesa template
employedby many Free Softwae projects. However, re-
liance on a single developeror maintainercreatesa sin-
gle point of failure that raisesa numberof seriousquality
andreliability concerns- especiallywhenconsideedin the
contet of thevolunteerbasedhature of mostFreeSoftwae
projects. Thispaperwill investigatethe nature of problems
raisedby this modelwithin the DebianProjectand will ex-
plore several possiblestrategiesaimedat remaving or de-
emphasizingherelianceon individual developes.

1. Introduction

In thelastfew yearsthe FreeSoftwareandOpenSource
developmentmodelshave establishedhemselesasviable
alternatves to proprietarysoftwaredevelopmentstructures.
In fact, the suggestionthat the quality of Free Software
projectsmeetsor exceedsthatof proprietaryalternatvesis
heardincreasinglyfrequentlyandis becomingincreasingly
difficult to dery [12, 9, 11]. With his now famousmantra,
“given enougheyeballs,all bugs are shallow”, Eric Ray-
mondwas ableto highlight the importantrole that highly
parallelizeddevelopmentplaysin the creationof high qual-
ity Freeand OpenSourceSoftware [10]. However, soft-
ware developmentdoesnot benefitfrom parallelizationin
the sameway thatdeluggingdoes.lt is a well-known fact
that merely adding further programmergo a project will
neitherimprove its quality nor shorterthereleasecycle [5].
In fact, the reverseappeargo be the caseas studieshave

BenjaminMako Hill
HampshireCollege
Amherst,Massachusett$§)SA
mako@debian.ay

confirmedthat most Free Software projectsarein factde-
sighedanddevelopedby very smallteamsor anindividual
developer[7].

Theseindividualsandsmallteamsbenefitfrom the effi-
cieng thatis adirectproductof theincreasedevel of intra-
project communicationensuredby the low level of com-
plexity in decisionmaking structures.However, this cen-
tralizeddevelopmenimodelcreatesa singlepoint of failure
with seriougquality assurancémplications. Thesearecom-
poundedy thefactthatmostFreeSoftwaredevelopmenis
performedby volunteeravho cannotberelieduponfor con-
sistentievelsof work in thesameway thatnon-wlunteersn
mostcommercialprojectscan([7]. As obsered previously,
themajority of FreeSoftwareprojectsaredirectedby asin-
gle“leaddeveloper’—usuallythesoftwares original author
—who assumesherole of “maintainer’andwho integrates
patchessubmittedfrom developersin his or herusercom-
munity andwho organizesand coordinategelease®f the
software. As a resultof the centralizeddecisionmaking
structure developmentstallsin the absencef theleadde-
veloper Thesetypesof developmentabelaysandtheaban-
donmenbf popularFreeSoftwareprojectswith established
usercommunitiesareremarkablycommon.Workingto pre-
dict or preventtheseabandonments difficult. Thereasons
why a developermight temporarilyor permanentlycease
work on a projectareasunpredictablesthey aremultifar-
ious; they might be overwhelmedwith work in their “real
life” professionthey mighthavelostinterestn theprogram
or theirprioritiesmightsimply have changedTo compound
matters,distinguishinga temporarysabbaticafrom a full
abandonmenis often difficult. Developersoften cling to
a projectthey are emotionallyinvolved in by urging their
useranddevelopercommunityto be patientbut never find
thetime.

In the following analysis, we will evaluate the De-
bian Projects approacheto centralizedandindividualized
project maintenanceas a quality assurancéssue. We re-
alize thatreplacinglead developerswith teamsor expand-

105



ing thesizeof existingteamsds anunrealisticallysimplistic
solution: it introducescompleity andrelatedintra-project
communicatiorissues. It alsoworks to counterthe bene-
fits which have madeFreeSoftwarecommunitys “one and
mary” developmentnddehuggingsystensoeffective. We
realizethat in mary ways, Debianis a unique Free Soft-
wareproject.However, becaus®ebianis solargeandpulls

developersfrom acrossthe world andthe full spectrumof

the FreeandOpenSourceSoftwarecommunity we believe

thatlessongearnedrom Debiancanbegeneralizegndap-
pliedto FreeandOpenSourceSoftwaredevelopmentmore
broadly

2. Debian and its Package Maintainers

With over 10,000packagesheDebianProjectoffersthe
largest GNU/Linux distribution available [8]. As Debian
seneslargely asanaggr@ationof existing software,its de-
velopers’primary taskis integration. Applicationswhich
conformto the Debian Free Software Guidelines[3] are
pulledin from the community(from so called “upstream”
developers)and integratedas “packages’into the Debian
systemaccordingto an establishedset of policy guide-
lines[4]. In the majority of casesanindividual is respon-
siblefor eachDebianpackage- a classificatiorthatusually
correspondgo one application. The meta-informationof
eachDebianpackagecontainsa “Maintainer” field which
liststhenameande-mailaddres®f theindividualin chage
of the software. As aresultof this hard-codedlependence
onindividuals,the problemsrelatedto therelianceon indi-
vidual developersdescribedn the introductorysectionap-
ply to Debianandupstreandeveloperssimilarly.

At the moment,a senseof ownershipaccompanieshe
maintainershipof a package.In mary casesmaintainers
have a strongattachmento their packagesndbecomeup-
setwhenanotherDebiandeveloperintervenesin their job
of maintainingthe software, frequentlyresultingin heated
exchangeson mailing lists. However, since Debianis a
volunteerbasedeffort and a highly integratedand coordi-
natedsystemtheprojecthasinstitutedmechanismso allow
developersto assisteachotherwith their packagesvhen
required. Hence, Debian has introducedthe conceptof
Non-MaintainerUploads(NMUSs). As the nameimplies,
an NMU is an upload done by a personwho is not the
maintainerof the package. The DebianDevelopers Ref-
erence[2], a documentdescribingthe recommendegbro-
ceduresandavailableresourcesor Debiandevelopers has
awhole sectiondevotedto NMUSs. It doesnot simply de-
scribehow NMUs aredone,but alsowhenthey areappro-
priate. The Developers ReferencesuggestshatNMUs are
especiallyjustified for securityfixesandduring the prepa-
ration of releasesvhen a packagesnaintainerappeardo
be inactive or inaccessible.The referenceurgesthat spe-

cial carebe taken when doing an NMU becausehe per
son preparingthe NMU might not be asfamiliar with the
packageasits maintainer It is extremelyembarrassingnd
irresponsibleo breaka packageduringanNMU.

While the mechanismfor performing Non-Maintainer
Uploadshasbeenin placefor averylongtime, the percep-
tion of NMUs haschangedover time. Currently mary de-
veloperdnterpretNMUs asasignthatthey arenotperform-
ing their work properly While this is not alwaysthe case,
this perceptions widespreadamongboth usersanddevel-
opers.In thepast,this elementbf stigmawas notconnected
to NMUs. As aresult,developerswerewelcome,evenen-
couragedto performNMUs — an attitudethatsomedevel-
operscontinueto hold. The acceptancef NMUs demon-
stratesa practicalunderstandingf and approachto Free
Software. It is not always possiblefor a volunteerto per
form their dutiesconsistentlyandthusit shouldbe appreci-
atedwhensomeondendsaneedechand.Thecauseof shift
towardaview of NMUs asmoreremedialandpenalizingis
unclear Oneplausibleanalysisconnectghis shift with the
greatgrowth of Debian. While the projectplateauedearly
onataround200Debiandevelopersthegrouphasexploded
recentlyto nearly1000. Consequentlyit is no longerpos-
siblefor developersto know, or evenknow of, eachof their
co-developers. This fact alonehashada radical effect on
the natureandself-perceptiorof the Debiancommunity It
standsto reasonthat mary developerswill find NMUs by
developersthat they know more acceptableéhanthoseby
developersthey areunfamiliar with. Eventhoughthe per
sonperformingan NMU might be competent&and exhibit-
ing goodtechnicajudgmenttheactof a“stranger’making
uploadsof a developersown packagesanmore easily be
perceved as aviolentaction.

SinceDebians sizeis only likely to increasethe project
hasbeenforcedto find a mechanisnto allow maintainers
to explicitly specifyanindividual or groupthey find trust-
worthy andwho canstepin asa“backupmaintainer”.Such
a mechanisimhasbeenintroducedinto the projectrecently
in the form of an addedfield in a packagescontrol” file.
While the meta-informationof a packagestill containsa
“Maintainer” field, thereis now alsoan optional“Upload-
ers” field. While it is still possiblefor everyoneto do an
NMU of a specificpackageanuploaddoneby a developer
listedasanuploadeffor this packagewill betreatedasareg-
ularuploadratherthananNMU. Specifyingexplicit backup
maintainerds usefulandincreasinglyencouragedbecause
the QA or securityteamhasa list of competentor expe-
rienceddevelopersto contactwhenthe packages primary
maintaineris unreachable.

105



2.1. Explicit Group Responsibility

In the solutiondescribedabore, thereis still a primary
individual maintainerandthe “Uploaders”act morein the
role of backup. However, its often useful, bothin routine
packageanaintenancandfor quality andreliability reasons,
for thesesecondarymaintainergo take a moreacte role.
Thatis, therecanalsobeateamof maintainerdor aspecific
package This type of maintenancés particularlyadvanta-
geousfor larger and more importantpackages.For exam-
ple, packagesn Debians central“base” systemwhich are
installedon every Debianmachineand which include es-
sentialprogramslike GNU tar or Debians packagemain-
tenancesystemdpkg are likely to get a high numberof
moreimperatve bug reportsthanlessfrequentlyusedpack-
ages.Consequentlyit is oftenbeneficialto have morethan
one developerworking on triaging the bug listing. How-
ever, distributing the work amongseveral developersis not
constructve for every task of the packagemaintainer It
hasbeensuggestedhat QA work requireslesscoordina-
tion than the actualdevelopment[12]. Thus, the task of
maintainingthe bug listing andfixing bugsmight be shared
betweenseveral developers,while an individual might be
explicitly responsibldor packaginghe fixed softwareand
makingtimely uploads.

While certainobvious advantageglow from teammain-
tenanceanddevelopmentthe modelis not without its dis-
adwantages. For example, by challengingconceptionsof
ownership,groupsmight decreasenaintainers’feeling of
responsibilityfor their packagesWhile a single developer
createsa single point of failure, he or sheis alsoa singly
clearresponsiblgarty Whena packagés maintainedoy a
group,memberof theteammightpostponeémportantwork
becauseéhey assumehatsomeoneelsewill doit. Further
more,decreasinghe attachmentnaintainersoften have to
their packagesvith the goal of facilitating NMUs tendsto
decreas¢hesensef ownershipthatcanactasausefulmo-
tivating factor In thesesituations,finding an appropriate
balanceis crucial. In doing so, it is essentiato remember
thatthe questionf responsibilityandmotivationareques-
tionsthataretightly linkedto issueof personalityandvary
greatlyamongdevelopersacrossandwithin cultures. This
is particularlyevidentin diverseinternationalprojectslike
Debian.

2.2. Facilitating Group Communication

Unfortunately moving from individual to teammainte-
nanceresultsin an inevitable increasein communication
compleity [5]. Therefore,it is crucial to provide solid
mechanismsor increasinghe effectivenesf intra-group
communicationbefore creatingor augmentingteams[6].
One useful methodis to carefully and critically limit the

type of tasksthatwill be sharedandthe typesof tasksthat
will remainin the domainof individuals. For example,QA
work, especiallyreproducingougsandgettingmoreinfor-
mation from the bug submitters,can be distributed fairly
well, while this parallelizations muchmoredifficult to ac-
complishfor developmenbr design.By takingthe pressure
off of leadmaintainersn parallizableareasmaintainersare
given moretime to devote to designissuesand his or her
own irreplaceabilityis tempered.

Toward theseends,there must be establishedand effi-
cientsystemdor communicatiorbetweergroupmembers.
Sincelike mosthigh-profileFreeSoftwareprojects Debian
developments nottiedto a particularlocality, communica-
tion usually occursthroughe-mail and IRC. Additionally,
DebianProjectcorrespondende regardsto bug reportsare
handledhroughDebians Bug TrackingSysterm1]. Dueto
thefactthatthe Bug TrackingSystem(BTS) is universally
accessiblendpublicly archived,teammemberscaneasily
follow work doneby othermembersf thegroup. A useful
mechanisnbuilt into Debians BTS andotherpopularFree
Software bug trackingsystemdik e Bugzilla allows people
to subscribeto bug reportsfor a specificpackage.In this
way, usersandteammembersreceve all correspondence
by e-mail and caneasilytrack packagesvithout visiting a
web site. In additionto teammembersthis functionality
providesamechanisnior interestedisersandupstreande-
velopersto becomeinvolved with their softwares Debian
packageandto stayinformedof bugs. Whenan upstream
issue(as opposedto a Debianspecificissue)is reported,
they canfollow up directly andprovide patchesThissenes
to facilitatemoreactive collaborationbetweena packages
Debianmaintainerand upstreammaintainerin a way that
is mutually beneficial. The upstreamdeveloper benefits
from thedirectlink to usergestingtheir softwarewhile the
Debianmaintainerprofits from having the upstreandevel-
opersinputon resolvingdifficult bugs.

2.3. Case Studies and Examples

Sincethe relatively recentintroductionof the collabo-
rative mechanismslescribedabore, numeroudDebianand
upstreammaintainershave taken advantageof them. The
following three examplesare representatie of the impor
tanceandexperiencewith thesesystems.

In the first example, the upstreammaintainerof GNU
Privacy Guard (GnuPG) subscribedto Debians GnuPG
packagein the BTS. As a result, he was betterinformed
of bugsin his softwareandwas pleasedo find thathecould
leveragethe Debianinfrastructureas a platform for users
to testhis software. Furthermorehe respondedo bug re-
portswhenthey pertainedto upstreamssues.He alsore-
spondedo featurerequestshroughimplementinghefunc-
tionality upstreanithereforealsomakingthefeaturesavail-

107



ableto non-Debianusers). Finally, it is worth noting that

thisteam-maintenanosas stagedn a mannerthatallowed

for a firm division betweenthe Debianand the upstream
maintainersin only a handfulof occasionglid bothmain-

tainersrespondo a bug reportsimultaneouslyAs a result,

the two maintainershave beenableto carry out their tasks
moreefficiently in the context of anincreasedcommunica-
tion effort.

A similarsecondexampleinvolvesGNU maintainePaul
Eggertwho is responsibldor a numberof importantGNU
programsincluding tar, gzip, bison and others. Paul has
startedto scanthe Debian Bug Tracking Systemfor up-
streambugsandtakesthesebug reportsinto consideration
when preparingnewn upstreanmreleases.In fact, when he
preparesa new releaseof one of his tools, he mails the
Debianmaintainemwith a detailedlisting describingwhich
bugsareaddresseih the new version.This is a perfectex-
ampleof how thedirectinvolvementof the upstreanmain-
taineranda concerteckeffort at team-baseavork andgood
intra-projectcommunicationleadsto a product of much
greatemuality.

The GNU C library providesafinal example.While the
GNU C library Debianpackagehasbeenmaintainedby a
singlemaintainerin the past,thetaskwas dauntinganddif-
ficult to perform effectively. Recently a group of main-
tainershas beendeleggatedresponsibilityfor the comple
andimportantpackage.In fact, the “Maintainer” field no
longer list a specific maintainer but a mailing list. This
mailing list is openandpublic so even developerswho are
not dedicateduploadersof the glibc packagecanfollowing
the discussionsand provide commentsand patches.In the
monthsthat glibc hasbeenunderteammaintenanceded-
icated glibc maintainershave continuedto independently
commitpatchego CVS. However, while a handfulof peo-
ple feel empaveredto work on the packageno onefeels
responsibldo coordinateor work towardreleasesAlluded
to above, this issuemight be resohed by with the desig-
nation of a individual asresponsiblefor coordinatingand
executinguploads.

3. Application

Many of the insights gainedfrom Debian can be ap-
pliedto otherFreeSoftwareprojects.While therearemary
projectswith only onedeveloperin aleadershipole, thead-
dition of secondarymaintainerdhasadwantageghatshould
be clearfrom Debians example. Thesesecondarymain-
tainerscan act as “backup” primary maintainersand can
assistin pushingout new releasesvhenthereare security
relatedissues.Additionally, having a specifiedbackupde-
veloperprovidesan obvious successofor a projectwhose
primary developerbecomedbusy, missing,or otherwiseun-
available. While it hasbeenarguedthatthe communityhas

establishedgood proceduredor adopting projectswhich
have beenabandonedy theirprimarydeveloper{10], spec-
ifying a successohascertainadvantages.First of all, the
original authorcandirectthe future of the projectby pick-
ing a successothey approve of. Furthermorethe backup
maintainemwill have accesgo the developmentinfrastruc-
ture which will make any necessaryransitioneasier Not
only should backupdevelopersbe able to make new re-
leasesthey shouldalsobe ableto control the domainand
web site of a project. It is not uncommonfor a new de-
veloperto adopta projectbut for the projectinfrastructure,
including the project’s domainname to remainin the con-
trol of a previous maintainerwho hasdisappearedndcan
notbereachedTheeffectsof suchasituationcanbedisas-
trousbut caneasilybe avoidedby encouragingnaintainers
to appointa backupmaintainerandempavering themwith
full accesandprivileges.

4. Conclusions

The strongrelianceon individual developersis a qual-
ity assuranceonsiderationn thatit is unrealisticto expect
completepredictabilityandreliability from volunteers De-
bian’s experiencehasdemonstratethattrustedandcompe-
tent backupmaintainersexplicitly establishedy the pri-
mary maintainercan provide one successfultemplate of
dealing with this problem. Furthermore,these backup
maintainerscanplay an active role in the daily upkeepof
the software. For example, QA efforts, suchasreproduc-
ing bug reportsandfollowing up with bug submitters are
highly parallizableand benefitfrom being dealt with by
groups,especiallywhenan importantor complex package
is involved.

Unfortunately there are also downsideswhen moving
from individual to team maintainership. The most obvi-
ousproblemis anincreasan compleity andthe needfor
additionalcommunication Additionally, somemaintainers
feelalossin responsibilityand motivation anda tendeng
to wait for otherteammembersto accomplishunpleasant
tasks.

Becauseargumentsfor group maintenancef software
hasbothrecognizedenefitsanddownsidesit is important
to studythe effectsand experiencef groupmaintenance
in FreeSoftware projects. The threeshortcasesanalyzed
imply largely beneficialresults.It remaingto be established
how representatie thesepackagesare within Debianand
how applicableheirexamplesareto FreeSoftwareprojects
moregenerally In any case the potentialfor collaboratve
andgroup maintenancén successfullyresolvinga serious
guality assurancéssueis obvious andits importanceand
prominencean successfuprojects,in oneform or another
seemdik e agoodpossibility.

108



References

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]

(10]
[11]

[12]

DebianBug TrackingSystem.http://bugs.debian.
org/.

DebianDevelopers’Referencehttp: //www.debian.
org/doc/developers-reference.

Debian Free Software Guidelines. http://www.
debian.org/social contract.

Debian Project Policy. http://www.debian.org/
doc/debian-policy/.

F. P. Brooks. The Mythical Man-Month: Essayson Soft-
ware Engineering Addison-Wesle/ PublishingCompary,
2ndedition,2000.

G. N. Dafermos. Managemenand Virtual Decentralised
Networks: The Linux Project. First Monday 6(11),
November2001. http://www.firstmonday.org/
issues/issue6_11/dafermos/.

R. Ghosh,R. Glott, B. Krieger, andG. Robles. Free/Libre
and OpenSourceSoftware: Suney and Study Technical
report, Internationallnstitute of Infonomics, University of
Maastricht, The NetherlandsJune2002. http://www.
infonomics.nl/FLOSS/report/.

J. M. Gonzéalez-Barahonayl. A. Ortufio Pérez,P. de las
HerasQuir6s, J. CentenoGonzalez,andV. Matellan Oliv-
era. CountingPotatoesThe Sizeof Debian2.2. Upgrade
11(6):60—66,December001.
http://people.debian.org/~jgb/
debian-counting/counting-potatoes/.

T. J. Halloranand W. L. Scherlis. High quality and open
sourcesoftwarepractices.In 2ndWorkshopon OpenSource
Softwae Engineering ICSE,2002.

E. S. Raymond. The Cathedal andthe Bazaar O'Reilly,
1999.

Reasoning. How open-sourceand commercial software
compare.

D. C. SchmidtandA. Porter Leveragingopen-sourceom-
munitiesto improve the quality & performanceof open-
sourcesoftware. In 1stWorkshopon OpenSouce Softwae
Engineering ICSE,2001.

109



